An agent-based model to study the emergence of urban structure

Rémi Lemoy, Charles Raux, Pablo Jensen

LET (Transport Economics Laboratory), IXXI (Complex Systems Institute), ENS Lyon Physics Laboratory

Introduction

- General aim: to study the interaction between transport and land use
- Research question: urban social structure ("North American" vs "European" city)
- Tool: agent-based system (NetLogo)
- Interactions between economic agents (micro-behaviour)...
- ... and emergence of a city (macro-level)
- Theoretical basis : Urban Economics standard model (Alonso, Muth, Mills)

• Why a physicist to do this ?

Agent-based emergence of urban structure

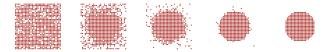
Introduction

Outline

1 Analytical and agent-based models

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

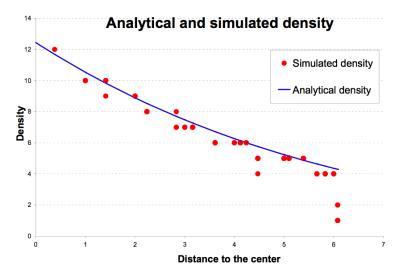
Outline


2 Additions to the standard model

Overview of the Urban Economics model

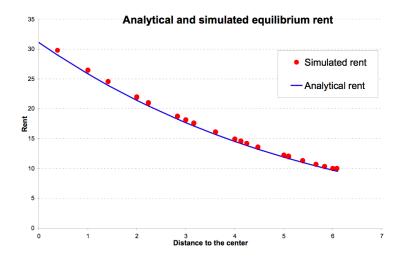
- Monocentric model: CBD, transport cost for daily work
- Agents compete for land: landowners rent to the highest bidder
- Moves have no cost
- Utility U(z, s), z composite good and s surface of housing
- Budget constraint Y = z + tx + ps, Y income, t transport cost (unit distance), x distance to the center, p rent
- Agents maximize their utility while respecting the budget constraint → homogeneous utility, equilibrium rent and density

Agent-based implementation



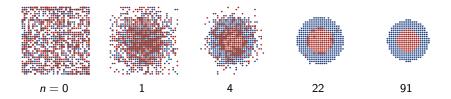
- 2D grid with cells representing residential or agricultural blocks; CBD
- Initialization: agents are placed at random
- $U = \alpha \ln z + \beta \ln s$, $\alpha + \beta = 1$
- Evolution: Agent and cell chosen at random, move if $\Delta U > 0$ with a bid $p_{n+1} = p_n(1 + \epsilon_s \frac{\Delta U}{U})$, ϵ_s bid parameter
- The price of vacant cells decreases exponentially
- If a higher bidder arrives in an already full cell, some agents go to "the hotel" with decreasing utility

Remarks on the agent-based model

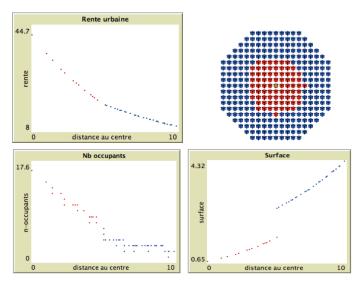

- Utility specification (while standard economics articles derive general conditions)
- Very simple interaction between agents, to obtain the analytical equilibrium
- Interaction suggested by the analytical model
- Too simple interaction: unrealistic, "no frictions" (can be improved with ABMs)

Comparison

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)


Comparison

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで


Evolution of the simulations

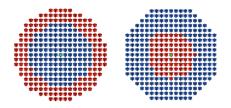
- 2 income groups: poor agents Y_p , rich agents $Y_r = Y_p \times 1, 6$
- *n* average number of moves per agent

- Time evolution: utility U becomes homogeneous in the city
- No (obvious) link with the historical evolution of a city

Agent-based model with two income groups

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Outline

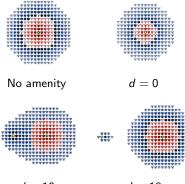

2 Additions to the standard model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3 Perspectives

Introduction of a value of time

- $T(x) = (t + \frac{c_t}{v})x = Tx$, c_t value of time and v speed
- If $T_r/Y_r > T_p/Y_p$ (or equivalently $T_r/T_p > Y_r/Y_p$), rich agents live in the center of the city



 Empirically, the value of time does not increase rapidly enough with income

Introduction of amenities

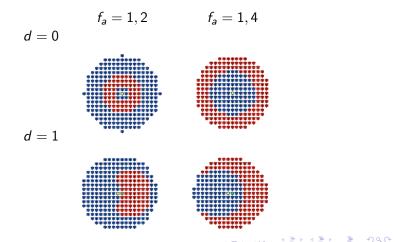
- Environmental or historical amenities, urban facilities [Bruckner, Thisse, Zenou (1999)]
- Specification of the amenity function: $a(r) = a_0 \exp(-r/b)$, r distance to the amenity, a_0 attractiveness, b range of the amenity
- Additional term in the utility function $U = \alpha \ln z + \beta \ln s + \gamma \ln (1 + a(r)), \text{ with } \gamma \text{ preference for the amenity}$

Distance from the amenity to the center

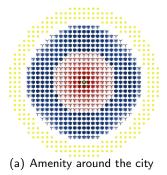
Model	$U_r - U_p$	$D_{\rm tot}$	$ ho_{mean}$
Ref.	100	100	100
<i>d</i> = 0	98,7	74,5	132,1
3	99,1	82,6	128,2
6	99,6	95,6	117,1
10	100,1	108,2	104,1
14	100,1	113,8	95,7
18	100,0	105,5	98,3

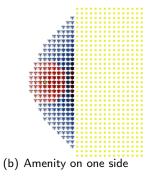
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

d = 10

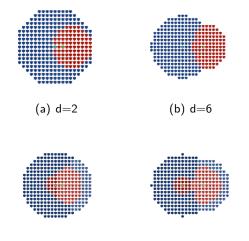

d = 18

Outcomes


- Environmental outcome: commuting distances decrease if the amenity is close to the center, increase if it is far away
- Social outcome: if the amenity is close to the center, the utility gap between rich and poor decreases, and increases if the amenity is far from the center
- Leapfrog development: in this model an attractive amenity far away from the center can cause leapfrog development


Differentiated preferences

• rich agents have a higher preference for the amenity than poor agents $\gamma_r = \gamma_p \times f_a$


Extensive amenities

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Polycentrism

(c) d=2

Agent-based emergence of urban structure

Perspectives

Outline

2 Additions to the standard model

Perspectives

- Calibration of the agent-based model: introduction of vertical housing
- Historical evolution of an "open" city with endogenous amenities

- In general, historical evolution of "american" and "european" cities
- Introducing more realistic mechanisms for moves, bids
 ("market frictions")

Conclusion

Methodology

- Introduction of interactions between agents in an agent-based model allows us to reproduce the standard equilibrium model
- Features of the model that are difficult to deal with analytically can be studied
- Results
 - Value of time: no inversion of the "American" city
 - Central amenity with the same preference for both income groups: no inversion
 - Non central amenity: influence dependent on the distance to the center
 - A central amenity with differentiated preferences can inverse the city configuration